
A Quasi Maximum Likelihood Approach for Large

Approximate Dynamic Factor Models∗

Catherine Doz, Université Cergy-Pontoise
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1 Introduction

The idea that the dynamics of large panels of time series can be characterized as
being driven by few common factors and a variable specific-idiosyncratic component is
appealing for macroeconomic and finance applications where data are strongly collinear.
Applications in macroeconomics date back to the seventies (Geweke, 1977; Sargent and
Sims, 1977; Geweke and Singleton, 1980). In finance the factor model has also a long
tradition since it relates closely to the CAPM model of asset prices.

In traditional factor analysis, for a given size of the cross-section n, the model can
be consistently estimated by maximum likelihood. The literature has proposed both
frequency domain (Geweke, 1977; Sargent and Sims, 1977; Geweke and Singleton, 1980)
and time domain (Engle and Watson, 1981; Stock and Watson, 1989; Quah and Sargent,
1992) methods.

Identification is achieved by assuming that, for each series, the component driven by
the common factors (common component) is orthogonal to the idiosyncratic component
and the idiosyncratic component has cross-sectionally orthogonal elements. A factor
model with orthogonal idiosyncratic elements is called an exact factor model.

Although the idea of factor analysis is appealing, the traditional approach presents
some limitations. First of all, the assumption of an exact factor structure is an excessive
straightjacket on the data, leading to potentially harmful misspecification problems. In
particular, with large panels, the assumption of orthogonal idiosyncratic elements is
likely to be less adequate than with panels including a small number of aggregate
variables. Second, although the coefficients of the factor loadings can be consistently
estimated for T large via maximum likelihood, the factors are indeterminate and one
can only obtain their expected value (on this point, see Steiger, 1979). Third, many
empirically interesting economic applications require the study of large panels, situation
in which the properties of the maximum likelihood estimates are unknown and where
maximum likelihood is generally considered not feasible (Bai, 2003; Bai and Ng, 2002).

As a response to these limitations, recent literature has generalized the idea of
factor analysis to handle less strict assumptions on the covariance of the idiosyncratic
elements (approximate factor structure) and proposed non-parametric estimators of the
common factors based on principal components, which are feasible for n large (Forni,
Hallin, Lippi, and Reichlin, 2000; Stock and Watson, 2002a,b).

A key feature of this approach is that consistency is analyzed as n, as well as
T , go to infinity. It is shown that, under suitable assumptions, if the cross-sectional
dimension n tends to infinity, the principal components of the observations become
increasingly collinear with the common factors (Chamberlain, 1983; Chamberlain and
Rothschild, 1983; Forni, Hallin, Lippi, and Reichlin, 2000; Forni and Lippi, 2001).
Principal components are also proved to be n, T consistent estimators of the factor
space (Bai, 2003; Bai and Ng, 2002; Forni, Hallin, Lippi, and Reichlin, 2000, 2005b;
Stock and Watson, 2002a,b; Forni, Giannone, Lippi, and Reichlin, 2005a).

The approximate factor model presents several advantages with respect to the exact
model. It is very flexible and suitable under general assumptions on measurement
error, geographical clustering and, in general, local cross correlation. However, the
maximum likelihood estimator has never been analyzed for this model. The reason is
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that, in order to estimate the model by maximum likelihood, it is necessary to impose
a parametrization while retaining parsimony. In the exact factor model parsimony is
achieved by restricting the cross-correlation among idiosyncratic components to be zero.
Once this restriction is relaxed, there is no obvious way to model the cross-sectional
correlation among idiosyncratic terms since in the cross-section there is no natural
order.

This paper studies maximum likelihood estimation for the approximate factor model
for large cross-sections. The central idea is to treat the exact factor model as a misspec-
ified approximating model and analyze the properties, for n and T going to infinity, of
the maximum likelihood estimator of the factors under misspecification, that is when
the true probabilistic model is approximated by a more restricted model. This is a
quasi maximum likelihood estimator (QML) in the sense of White (1982). We derive
the n, T rates of convergence for the implied estimates of the common factors. We show
that traditional factor analysis in large cross-section is feasible and that consistency is
achieved even if the underlying data generating process is an approximate factor model
rather than an exact one. More precisely, our consistency result shows that the ex-
pected value of the common factors converges to the true factors as n, T → ∞ along
any path (we also provide the consistency rates).

This result tells us that the misspecification error due to the approximate structure
of the idiosyncratic component vanishes asymptotically, for n and T large, provided
that the cross-correlation of the idiosyncratic processes is limited and that of the com-
mon components is pervasive throughout the cross section as n increases. These are
conditions that have been introduced by Chamberlain and Rothschild (1983) and used,
reinterpreted and extended by Connor and Korajczyk (1986, 1988, 1993); Forni, Hallin,
Lippi, and Reichlin (2000); Forni and Lippi (2001); Stock and Watson (2002a,b).

Our result should be interpreted as a reconciliation of the classical factor analysis
approach with the new generation of dynamic factor models with n large in which
the common factors are estimated by principal components. We show that these two
approaches are related in the sense that principal components estimators can be rein-
terpreted as quasi-maximum likelihood estimators, i.e. maximum likelihood under a
misspecified model where data are assumed to be generated by a factor model with
spherical idiosyncratic components and non serially correlated observations.

From the practical point of view we show that, unlike what sometimes claimed in
the literature, classical likelihood based methods are feasible in the large n case. Un-
der standard parameterizations, the factor model can in fact be cast in a state space
form and the likelihood can be maximized via the EM algorithm which requires at
each iteration only one run of the Kalman smoother (Engle and Watson, 1981). Under
the exact factor structure restriction on the approximating model, the computational
complexity of the smoother depends essentially on the number of common factors r
which is typically small. The intuition of why this works was first suggested by Quah
and Sargent (1992) who estimated a model with n = 60. Furthermore, principal com-
ponents provide a good approximation of the common factors in a large cross-section,
they can be used to obtain a good initial estimate of the parameters to initialize the
numerical algorithm for maximum likelihood estimation.

There are many reasons why our result is a useful contribution to the literature
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of factor models in large panels. First, the n, T asymptotic properties of maximum
likelihood estimation of factor models have never been studies. Second, maximum like-
lihood estimation is particularly attractive for economic applications since it provides
a framework for incorporating restrictions deriving from economic theory in the sta-
tistical model. Indeed, an increasing number of studies in macroeconomics have used
likelihood based Bayesian methods for extracting the common factors from a large
panel of time series (Kose, Otrok, and Whiteman, 2003; Boivin and Giannoni, 2005;
Bernanke, Boivin, and Eliasz, 2005). However, in that approach, the model does not al-
low for correlation amongst idiosyncratic components, that is an exact factor structure
is imposed in estimation. One implication of the result of our paper is that misspeci-
fication is harmless in large panels since its effect vanishes asymptotically. Moreover,
even assuming that the true model has an exact factor structure, the asymptotic prop-
erties of the estimates, when both the sample size and the cross-sectional dimension
are large, have not been studied. Third, if the true data generating process (DGP) and
the approximating model coincide, then maximum likelihood estimates are the most
efficient.

The paper is organized as follows. Section two states the assumptions for the
model generating the model and those for the approximating model we will use in
estimation. Section three states the basic proposition showing consistency and rates for
the quasi maximum likelihood estimator. Section four discusses the relations between
quasi maximum likelihood and principal components estimator. Section five illustrates
the empirical results and Section six concludes.

2 Models

2.1 Notation

For any positive definite square matrix M , we will denote by λmax(M) (λmin(M))
its largest (smallest) eigenvalue. Moreover, for any matrix M we will denote by
‖M‖ the spectral norm defined as ‖M‖ =

√
λmax(M ′M). Given a stochastic pro-

cess {Xn,T ; T ∈ Z, n ∈ Z}, and a real sequence {an,T ; T ∈ Z, n ∈ Z} we will say that
Xn,T = OP

(
1

anT

)
as n, T → ∞, if the probability that an,T Xn,T is bounded tends to

one as n, T →∞.

2.2 The approximate dynamic factor model

We suppose that an n-dimensional zero-mean stationary process xt is the sum of two
unobservable components:

xt = Λ0ft + et (2.1)

where ft = (f1t, ..., frt)′, the common factors, is an r-dimensional stationary process
with mean zero; Λ0, the factor loadings, is an n × r matrix; et = (e1t, ..., ent)′, the
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idiosyncratic components, is an n-dimensional stationary process with mean zero and
covariance matrix E(ete′t) = Ψ0, whose entries will be denoted by E(eitejt) = ψ0,ij . The
common factors ft and the idiosyncratic component et are assumed to be uncorrelated
at all leads and lags, that is E(fjteis) = 0 for all j = 1, ..., r, i = 1, ..., n and t, s ∈ Z.
The number of common factors r is typically much smaller than the cross-sectional
dimension n.

Given a sample of size T , we will denote by capital cases the matrices collecting all
the variables, that is X = (x1, ...,xT )′ is the T×n matrix of observables, F = (f1, ..., fT )′

is the T×r matrix of common factors and E = (e1, ..., eT )′. All these quantities depend
on the size of the cross-section and on the sample size. For notational convenience we
will not index them by n, T .

The following assumptions define an approximate dynamic factor model. “Approxi-
mate” stands for a model that allows for limited crosss-correlation among idiosyncratic
components (Chamberlain and Rothschild, 1983). This is to be distinguished from the
“exact factor model” whose idiosyncratic elements are restricted to be cross-sectionally
orthogonal.1 The model is dynamic since we allow for weak serial correlations of the
common factor and the idiosyncratic components. Approximate factor models for dy-
namic panels have been studied, under similar assumptions, by Bai and Ng (2002,
2006); Forni, Giannone, Lippi, and Reichlin (2005a); Forni, Hallin, Lippi, and Reichlin
(2000, 2005b); Stock and Watson (2002a,b).

Assumption A (Approximate factor model)

A1 0 < λ < lim infn→∞ 1
nλmin (Λ′0Λ0) ≤ lim supn→∞ λmax

1
n (Λ′0Λ0) < λ̄ < ∞

A2 0 < ψ < lim infn→∞ λmin (Ψ0) ≤ lim supn→∞ λmax (Ψ0) < ψ̄ < ∞

Assumption B
There exists a positive constant M such that for all i, j ∈ N and for all T ∈ Z

i) E
(

1√
T

∑T
t=1(eitejt − ψ0,ij)

)2
< M

ii) E
∥∥∥ 1√

T

∑T
t=1 ftejt

∥∥∥
2

< M

iii) E
∥∥∥ 1√

T

∑T
t=1(ftf

′
t − Ir)

∥∥∥
2

< M

1Exact factor model have been studied and applied in econometrics by Engle and Watson (1981);
Geweke (1977); Kose, Otrok, and Whiteman (2003); Quah and Sargent (1992); Sargent and Sims (1977);
Stock and Watson (1991), among others.
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Assumption A1 entails that for n sufficiently large Λ′0Λ0/n has full rank r. Under
this assumption the common factors are required to remain pervasive as we increase
the number of series in the data-set. Assumption A2 limits the cross-correlation of
the idiosyncratic components. While it includes the case in which they are mutually
orthogonal (“exact factor model”), it allows for a more general structure.

Assumption B requires insures that the sample covariance matrix of the common
factors and the idiosyncratic component are

√
T consistent to their population coun-

terpart, uniformly with respect to the cross-sectional dimension. Precisely:

In order to estimate this model by maximum likelihood we need to impose a param-
eterizations that is sufficiently parsimonious. Parsimony is achieved in the exact factor
model by restricting the cross-correlation among idiosyncratic components to be zero.
Once this restriction is relaxed, as in Assumption A2, there is no obvious way to model
the cross-sectional correlation among idiosyncratic terms since in the cross-section there
is no natural order.

We proceed as follows. First, we will define an approximating models that restricts
the idiosyncratic components to be neither cross-sectionally nor serially correlated. We
will consider this “exact factor model” as a miss-specified approximation to model 2.1.
Second, we will prove that the effects of missspecification due to the approximation
vanishes as n, T →∞, under Assumptions A and B.

2.3 The approximating models

An approximating model is a possibly misspecified model that we will use to define the
likelihood. A natural candidate is the model that has been used in traditional exact
factor analysis for small cross-section (see, for example, Stock and Watson, 1991).

Approximating model: the exact factor model

R1 the common factors follow a finite order Gaussian VAR: A(L)ft = ut, with A(L) =
I −A1L− ...−ApL

p an r × r filter of finite length p with roots outside the unit
circle, and ut an r dimensional gaussian white noise, ut ∼ i.i.d N (0, Q).

R2 the idiosyncratic components are cross-sectionally independent gaussian white
noises: et ∼ i.i.d N (0, Ψd) where Ψd is a diagonal matrix.

Under assumptions R1 and R2, the model can be cast in a state space form with
the number of states equal the number of common factors r. For any set of parameters
the likelihood can then be evaluated using the Kalman filter.

The model is characterized by the quadruplet Λ, Ψd, A(L), Q. All the parameters
will be collected into θ ∈ Θ, where Θ is the parameter space defined by R1 and R2.
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Given the quasi maximum likelihood estimates of the parameters θ, the common
factors can be approximated by their expected value, which can be computed using the
Kalman smoother2:

F̂θ̂ = Eθ̂ [F|X]

where F̂θ̂ =
(
f̂θ̂1, ..., f̂θ̂T

)′
.

The idiosyncratic components are modelled as a cross-sectionally independent and
non serially correlated Gaussian processes. The orthogonality restriction among the
idiosyncratic components is key to maintain parsimony and identification.3

Asymptotic properties of the estimator are known to for n is fixed and T →∞ and
under the assumption that data are generated from an “exact factor structure” (see
Engle and Watson, 1981; Stock and Watson, 1991, for example). In what follows, we
extend previous studies by considering joint n, T asymptotic and under the more general
assumption that data are generated from an “approximate dynamic factor structure”.

Heuristically, we will ask what is the price that one pays by using an estimation
model which is misspecified in the way we have described.

We will now study the properties of a maximum likelihood estimator in which the
data follow a factor model that is dynamic and approximate (Assumptions A), while we
restrict the approximating model to be exact, with non serially correlated idiosyncratic
component and autoregressive common factors (R1 and R2). This is a Quasi Maximum
Likelihood (QML) estimator in the sense of White (1982).

3 The asymptotic properties of the QML estimator of the
common factors

Let us know introduce some further technical assumptions. First, to avoid degenerate
solutions for the maximum likelihood problem, we will impose the following constraints
in the maximization of the likelihood:

Constraints in the maximization of the likelihood

i) c ≤ ψ̂ii ≤ c̄ for all i ∈ N.

ii) |Â(z)| 6= 0, ∀|z| ≤ 1

2We write Eθ̂ [F|X] to denote Eθ [F|X] computed at θ = θ̂.
3We could also take into account, serial correlation of the idiosyncratic components without com-

promising the parsimony of the model by modelling it as cross-sectionally orthogonal autoregressive
process. We do not consider this case in order not to compromise expositional simplicity.
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Let θ̂ the parameters estimated by maximum likelihood under the constraints (i)
and (ii). We write F̂θ̂ for the implied estimates of the common factors.

Constraints (i) and (ii) define a new parameter space Θc ⊆ Θ. This constraint is
necessary to avoid situations in which estimated parameters imply non-stationarity of
the common factors and/or trivial situation in which the variance of the idiosyncratic
noise is either zero or infinite. Then, with Assumption C below we will insure that the
constraint on the size of the idiosyncratic component is never binding.

Assumption C
There exists δ > 0 such that c ≤ ψii − δ ≤ ψii + δ ≤ c̄ for all i ∈ N, where c and c̄ are
the constant in Assumption A (ii).

We are now ready to prove our main result.

Proposition 1 Under assumptions A, B and C we have:

trace
(

1
T

(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)
)

= Op

(
1

∆nT

)
as n, T →∞

where Ĥ =
(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
F is the coefficient of the OLS projection of F on F̂θ̂ and

∆nT = min
{√

T , n
log(n)

}
is the consistency rate.

Proof See the appendix.

The result above tells us that the common factors extracted using the Quasi Max-
imum Likelihood estimates of the parameters converge to the true common factors as
the sample size T and the cross-sectional dimension n go to infinity. No restriction of
the relative path of divergence of T and n is needed in order to achieve consistency.
In this sense the estimates are viable also when the size of the cross-section n is much
larger than the sample size T . Notice that since factors are identified only up to a
rotation, we converge to a rotation of the common factors.

The result of Proposition 1 holds also in case of miss-specification of the number of
factors and of the parameters governing the dynamics of the common factors.

Remark 1: The result of Proposition 1 holds if the likelihood if maximized under any
additional restrictions on A(L) and Q.

Remark 2: The result of Proposition 1 still holds if the approximating model has
more than r common factors.

The proof of Remark 1 and Remark 2 is in the appendix.

8



4 Quasi Maximum Likelihood and Principal Components

Factor in large cross-sections have been traditionally estimated by principal compo-
nents. The latter are closely connected with the QML estimator we propose here.
Replace R1 and R2 by the stronger restrictions:

Approximating model: the exact factor model

R1∗ ft ∼ i.i.d. N (0, Ir)

R2∗ et ∼ i.i.d. N (0, σ2In).

In this case the log likelihood takes the form:

LX (X; θ) = −nT

2
log 2π − T

2
log |ΛΛ′ + σ2In| − T

2
Tr

(
ΛΛ′ + σ2In

)−1
S

where S = 1
T X′X is the sample covariance matrix of the observation. Under the

normalization that Λ′Λ is a diagonal matrix with diagonal entries in decreasing order
of magnitude, the maximum likelihood solution is4:

Λ̂ = V(D − σ̂2Ir)1/2 and σ̂2 =
1
n

Trace(S − Λ̂Λ̂′)

where D is the r × r diagonal matrix containing the r largest eigenvalues of sample
covariance matrix and V is the n × r matrix whose columns are the corresponding
normalized eigenvalues (V ′V = Ir), that is SV = VD. The estimator for the common
factors is given by

F̂θ̂ = Eθ̂ [F|X] = X
(
Λ̂Λ̂′ + σ̂2In

)−1
Λ̂ = XΛ̂

(
Λ̂′Λ̂ + σ̂2In

)−1
= XV(D − σ̂2Ir)1/2D−1.

which are proportional to the sample principal components Ẑ = (ẑ1, ..., ẑT )′ which are
defined as Ẑ = XVD−1/2.

Result of Proposition 1 still holds in this case. Consistency of the principal compo-
nents estimates is a particular case of Proposition 1 which provides an alternative proof
of the result in Bai and Ng (2002) under a different set of assumptions. The proof of
this result is in the appendix.5

4See, for instance, Lawley and Maxwell (1963), Chap. 4.
5Further, traditional factor analysis with non serially correlated data corresponds to the case A(L) =

Ir, Q = Ir. Also under this restriction we have consistency of the common factors estimates.
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5 Monte Carlo study

In this section we run a simulation study to asses the performances of our estimator.
The model from which we simulate is standard in the literature. A similar model

has been used, for example, in Stock and Watson (2002a).
Let us define it below.

xt = Λft + Et

A(L)ft = ut, with ut i.i.d. N (0, Ir);

D(L)Et = vt with vt i.i.d. N (0, T )

Aij(L) =

{
1− ρL if i = j

0 if i 6= j
; i, j = 1, ..., r

Dij(L) =

{ √
αi(1− dL) if i = j

0 if i 6= j
; i, j = 1, ..., n

Λij i.i.d. N (0, 1), i = 1, ..., n; j = 1, .., r

αi = βi
1−βi

1
T

∑T
t=1

(∑r
j=1 Λijfjt

)2
with βi i.i.d. U([u, 1− u])

Tij = τ |i−j| 1
1−d2 , i, j = 1, ..., n

Notice that we allow for cross-correlation between idiosyncratic elements. Since T
is a Toeplitz matrix the cross-correlation among idiosyncratic elements is limited and
it is easily seen that Assumption A (ii) is satisfied. The coefficient τ controls for the
amount of cross-correlation. The exact factor model correspond to τ = 0.

The coefficient βi is the ratio between the variance of the idiosyncratic component,
eit, and the variance of the common component,

∑r
j=1 Λijfjt (the inverse of the signal

to noise ratio. In our simulation this ratio is uniformly distributed with an average of
50%. If u = .5 then the standardized observations have cross-sectionally homoscedastic
idiosyncratic components.

Notice that if τ = 0, d = 0, our approximating model is well specified and hence
Maximum Likelihood provides the most efficient estimates. If τ = 0, d = 0, ρ = 0,
we have a static exact factor model and iteratively reweighed principal components
provide the most efficient estimates. Finally, if τ = 0, d = 0, u = 1/2, then we have a
static factor models with spherical idiosyncratic components on standardized variables.
In this case principal components on standardized variables provide the most efficient
estimates.

We generate the model for different sizes of the cross-section: n = 5, 10, 25, 50, 100,
and for sample size T = 50, 100.

Maximum likelihood estimates are computed using the EM algorithm as in Engle
and Watson (1981) and Quah and Sargent (1992).
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This algorithm has the advantage of requiring only one run of the Kalman smoother
at each iteration. The computational complexity of the Kalman smoother depends
mainly on the number of states which in our approximating model corresponds to the
number of factors r and hence is independent of the size of the cross-section n.

To initialize the algorithm, we compute the first r sample principal components fpc,t

and estimate the parameters Λ̂(0)Â(0)(L), Ψ̂(0)
d by OLS, treating the principal compo-

nents as if they were the true common factors. Since these estimates have been proved
to be consistent for large cross-sections (Bai, 2003; Forni, Giannone, Lippi, and Reich-
lin, 2005a; Doz, Giannone, and Reichlin, 2005), the initialization is quite good provided
that the cross-section dimension is large. We hence expect the number of iterations
required for consistency to decrease as the cross-sectional dimension increases.

The two features highlighted above – small number of state variables and good
initialization – make the algorithm feasible in a large cross-section.

To get the intuition of the EM algorithm, let us collect the initial values of the
parameters in θ̂(0). We obtain a new value of the common factors by applying the
Kalman smoother:

f̂θ(0),t = Eθ̂(0)(ft|x1, ...,xT ).

If we stop here we have the two-step estimates of the common factors proposed by
Doz, Giannone, and Reichlin (2005); Giannone, Reichlin, and Sala (2004); Giannone,
Reichlin, and Small (2005).

A new estimate of the parameters, to be collected in θ̂(1), can then be computed
by OLS regression treating f̂θ(0),t as if they were the true common factors. If the OLS
regressions are modified in order to take into account the fact that the common factors
are estimated6, then we have the EM algorithm which converges to the local maximum
of the likelihood7.

We control convergence by looking at cm = LX(X;θ̂(m))−LX(X;θ̂(m−1)

(LX(X;θ̂(m))+LX(X;θ̂(m−1))/2
. We stop

after M iterations if cM < 10−4.

We simulate the model 500 times and, at each repetition, we apply the algorithm to
standardized data since the principal components used for initialization are not scale
invariant.

We compute the following estimates of the common factors:

- principal components: f̂pc,t := ẑt;

- two-step estimates: f̂2s,t = f̂θ̂(0),t

- maximum likelihood estimates: f̂ml,t := f̂θ(M),t.

6This requires the computation of Eθ(m)(f̂θ(m),t − ft)(f̂θ(m),t−k − ft−k)′, k = 0, ..., p, which are also
computed by the Kalman smoother. See for example Engle and Watson (1981).

7A detailed derivation of the EM algorithm for dynamic factor model is provided by Ghahramani
and Hinton (1996).
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We measure the performance of the different estimators by means of the following
trace statistics:

Tr
(
F′F̂(F̂′F̂)−1F̂′F

)

Tr (F′F)

where F̂ =
(
f̂1, ..., f̂T

)′
, and f̂t is any of the three estimates of the common factors.

This statistics is a multivariate version of the R2 of the regression of the observed
factors on the estimated factors. This is an appropriate measure since the common
factors are identified only up to a rotation. This statistics is also closely related to the
empirical canonical correlation between the true factors and their estimates. A number
close to one indicates a good approximation of the true common factors. Denoting by
TRpc, TR2s TRml the trace statistics for, respectively, principal component, two-step
and maximum likelihood estimates of the common factors, we compute the relative
trace statistics TRml/TRpc and TRml/TR2s. Numbers higher than one indicates that
Maximum Likelihood estimates of the common factors are more accurate than principal
components and two-step estimates.

Table 1: Simulation results for the model: ρ = .9, d = .5, τ = .5, u = .1, r = 1
TRml

n = 5 n = 10 n = 25 n = 50 n = 100
T = 50 0.52 0.68 0.74 0.75 0.76
T = 100 0.64 0.78 0.84 0.85 0.86

Number of iterations
n = 5 n = 10 n = 25 n = 50 n = 100

T = 50 13 9 5 4 3
T = 100 13 7 4 4 3

Computation time: seconds
n = 5 n = 10 n = 25 n = 50 n = 100

T = 50 0.53 0.25 0.20 0.33 1.07
T = 100 0.66 0.37 0.33 0.61 2.13

TRml/TRpc

n = 5 n = 10 n = 25 n = 50 n = 100
T = 50 1.11 1.04 1.00 1.00 1.00
T = 100 1.09 1.02 1.01 1.00 1.00

TRml/TR2s

n = 5 n = 10 n = 25 n = 50 n = 100
T = 50 1.03 1.01 1.00 1.00 1.00
T = 100 1.02 1.00 1.00 1.00 1.00

Table 1 reports the results of the Montecarlo experiment for one common factor,
r = 1, with serial correlation in both common factors, ρ = .9, and idiosyncratic compo-
nents, d = .5. The model is approximat because of the weak cross-sectional correlation
among idiosyncratic components, τ = .5. Finally the idiosyncratic component is cross-
sectionally heteroscedastic, u = .1. The numbers in the table refer to the average across
experiments.
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We would like to stress the following results:

1. The precision of the common factors estimated by Maximum Likelihood increases
with the size of the cross-section n.

2. The number of iterations required for convergence is small and decreases with the
size of the cross-section. As remarked above this is explained by the fact that, as
n increases, the initialization provided by principal components are increasingly
accurate and hence the computation time for convergence does not increase too
much with the cross-sectional dimension.

3. The Maximum Likelihood estimates always dominate simple principal compo-
nents and to a less extent the two-step procedure. As both n, T become large,
the precision of the estimated common factors increases and all methods tend to
perform similarly. This is not surprising, given that both methods provide consis-
tent estimates for n and T large. Improvement of the ML estimates are significant
for n = 5 and the improvement is of the order of 10% with respect to principal
components and less than 5% for the two-step estimates. This suggests that the
two-step Kalman smoother estimates already take appropriately into account the
dynamics of the common factors and the cross-sectional heteroscedasticity of the
idiosyncratic component. Hence the gains from further iterations are small.8

Table 2 reports the results for r = 3 while the remaining parameters are the same
as those used the Table 1: ρ = .9, d = .5, τ = .5, u = .1. The simulations have been run
for n ≥ 10 only, because an exact factor model with n = 5 and r = 3 is not identified.
Notice that as expected, although the main features outlined above are still present,
the estimates of the common factors are less precise with respect to the case of only one
common factors (given the same a set of data, it is more difficult to extract additional
factors). Improvements by the maximum likelihood are more sizable in this case. This
indicates that efficiency improvements are larger, the harder is the factor extraction.
We finally study a case in which the approximating model is well specified, that is the
idiosyncratic components is neither serially nor cross-sectionally correlated (d = 0, τ =
0). The remaining parameters are set as for the experiments reported in Table 1 and
2. In this case, as one can see from Table 3 below, the efficiency gains from QML
estimates over principal components and two-step estimates are more relevant.

Summarizing, QML estimates of approximate factor models work well in finite sam-
ple. Because of the explicit modelling of the dynamics and the cross-sectional het-
eroscedasticity, the maximum likelihood estimates dominate the principal components
and, to a less extent, the two two-step procedure. Efficiency improvements are relevant
when the factor extraction is difficult, that is, when there are more common factors to
estimate.

8See also Doz et al. (2005).
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Table 2: Simulation results for the model: ρ = .9, d = .5, τ = .5, u = .1, r = 3
TRml

n = 10 n = 25 n = 50 n = 100
T = 50 0.48 0.59 0.65 0.67
T = 100 0.58 0.75 0.80 0.82

Number of iterations
n = 10 n = 25 n = 50 n = 100

T = 50 26 12 7 5
T = 100 20 9 5 4

Computation time: seconds
n = 10 n = 25 n = 50 n = 100

T = 50 0.72 0.46 0.56 1.44
T = 100 1.08 0.68 0.87 2.31

TRml/TRpc

n = 10 n = 25 n = 50 n = 100
T = 50 1.08 1.05 1.03 1.01
T = 100 1.10 1.06 1.02 1.01

TRml/TR2s

n = 10 n = 25 n = 50 n = 100
T = 50 1.05 1.02 1.01 1.00
T = 100 1.07 1.03 1.00 1.00

Table 3: Simulation results for the model: ρ = .9, d = 0, τ = 0, u = .1, r = 3
TRml

n = 10 n = 25 n = 50 n = 100
T = 50 0.54 0.65 0.68 0.70
T = 100 0.66 0.78 0.81 0.82

Number of iterations
n = 10 n = 25 n = 50 n = 100

T = 50 21 9 6 5
T = 100 15 7 5 4

Computation time: seconds
n = 10 n = 25 n = 50 n = 100

T = 50 0.58 0.36 0.49 1.30
T = 100 0.83 0.54 0.84 2.29

TRml/TRpc

n = 10 n = 25 n = 50 n = 100
T = 50 1.14 1.06 1.03 1.01
T = 100 1.19 1.06 1.02 1.01

TRml/TR2s

n = 10 n = 25 n = 50 n = 100
T = 50 1.07 1.02 1.01 1.00
T = 100 1.10 1.01 1.00 1.00
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6 Summary and conclusions

The paper has studied quasi maximum likelihood (QML) estimation of the factors for
an approximate factor model. Consistency under different sources of miss-specification
is shown for n and T going to infinity.

As principal components the QML estimator is feasible for n large and can be easily
implemented using the Kalman smoother and the EM algorithm as in traditional factor
analysis. One desirable characteristic of this approach is that it can potentially produce
efficiency improvements with respect to PC because it exploits factor dynamics and non
sphericity of the idiosyncratic component.

Simulation results illustrate in what empirical conditions we can expect improve-
ment with respect to simple principle components.

The importance of this result, beside the potential efficiency improvements, is that
our parametric approach provides a natural framework for structural analysis since it
allows for imposing restrictions on the loadings as done, for example, in Bernanke,
Boivin, and Eliasz (2005); Boivin and Giannoni (2005); Kose, Otrok, and Whiteman
(2003); Forni and Reichlin (2001) and extracting shocks. These features are not studied
in this paper but they are natural extensions to explore in further work.
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7 Appendix

We adopt the following notations to define the pseudo likelihood under the approxi-
mating model which is completely characterized by the parameter θ:

- f(X,F)(X,F ; θ) is the joint density of the common factors and the observables,
depending on the parameter θ,

- fX(X; θ) and fF(F ; θ) are the corresponding marginal densities,

- fX|F=F (X; θ) and fF|X=X(F ; θ) are the corresponding conditional densities

where F ∈ R(T×r) and X ∈ R(T×n). We know that, for any (X,F ):

f(X,F)(X, F ; θ) = fX|F=F (X; θ)fF(F ; θ)
= fF|X=X(F ; θ)fX(X; θ)

so that:

fX(X; θ) =
fX|F=F (X; θ)fF(F ; θ)

fF|X=X(F ; θ)
.

The log-likelihood of the data LX(X; θ) = log fX(X; θ) can then be decomposed in
the following way:

LX(X; θ) = LX|F(X|F ; θ) + LF(F ; θ)− LF|X(F |X; θ)

where LX|F(X|F ; θ) = log fX|F=F (X; θ), LF(F ; θ) = log fF(F ; θ) and LF|X(F |X; θ) =
log fF|X=X(F ; θ).

Under the normality assumption, and denoting by X the actual observed values of
the underlying process, we can write, for any value of F :

LX|F(X|F ; θ) = −nT
2 log(2π)− T

2 log |Ψd| − 1
2Tr(X− FΛ′)Ψ−1

d (X− FΛ′)′

LF(F ; θ) = − rT
2 log(2π)− 1

2 log |Φθ| − 1
2(vecF ′)′Φ−1

θ (vecF ′)

LF|X(F |X; θ) = − rT
2 log(2π)− 1

2 log |Ωθ| − 1
2(vec(F − F̂θ)′)′Ω−1

θ (vec(F − F̂θ)′)

with
Φθ = Eθ [(vecF′)(vecF′)′],
F̂θ = Eθ [F|X] = (f̂θ,1, ..., f̂θ,T )′

and
Ωθ = Eθ

[
(vec(F− F̂θ)′)(vec(F− F̂θ)′)′

]
.
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We hence have, for any value of F :

LX(X; θ) = −nT
2 log(2π)− T

2 log |Ψd| − 1
2Tr(X− FΛ′)Ψ−1

d (X− FΛ′)′

−1
2(vecF ′)′Φ−1

θ (vecF ′)− 1
2 log |Ωθ|+ 1

2(vec(F − F̂θ)′)′Ω−1
θ (vec(F − F̂θ)′)

(7.2)

If we consider the likelihood computed by using F = F̂θ, (7.2) the above expression
becomes:

L(X; θ) = −nT
2 log(2π)− T

2 log |Ψd| − 1
2vec(F̂′θ)

′Φ−1
θ vec(F̂′θ)− 1

2 log |Ωθ|

−1
2Tr(FΛ′0 − F̂θΛ′ + E)Ψ−1

d (FΛ′0 − F̂θΛ′ + E)′
(7.3)

Let us now evaluate the likelihood at the following set of parameters:

θc
0 := {A(L) = Ir; Q = Ir; Λ = Λ0; Ψ = Ψ0,d}

where Ψ0,d is the diagonal matrix obtained by setting equal to zero all the out of
diagonal elements of Ψ0.

For θ = θc
0, we have Φθc

0
= IrT and Ωθc

0
= IT ⊗

(
Ir − Λ′0 (Λ0Λ′0 + Ψ0,d)

−1 Λ0

)
.

It can be easily checked that

(
Λ0Λ′0 + Ψ0,d

)−1 = Ψ−1
0,d −Ψ−1

0,dΛ0

(
Ir + Λ′0Ψ

−1
0,dΛ0

)−1
Λ′0Ψ

−1
0,d (7.4)

so that: Ωθc
0

= IT ⊗
(
Ir + Λ′0Ψ

−1
0,dΛ0

)−1
.

We then have:

L(X; θc
0) = −nT

2 log(2π)− T
2 log |Ψ0,d| − 1

2TrF̂′θc
0
F̂θc

0
− T

2 log
∣∣∣Ir + Λ′0Ψ

−1
0,dΛ0

∣∣∣

−1
2Tr

(
(F− F̂θc

0
)Λ′0 + E

)
Ψ−1

0,d

(
(F− F̂θc

0
)Λ′0 + E

)′
.

(7.5)

As n and T go to infinity (7.5) simplifies drastically since some of the terms are
asymptotically negligible. This is shown as a corollary of the following Lemma.
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Lemma 1 Under assumptions A, B, we have

1.
∥∥∥E′E

nT

∥∥∥ = Op

(
1
n

)
+ Op

(
1√
T

)
as n, T →∞

2. 1
T Tr(F− F̂θc

0
)′(F− F̂θc

0
) = Op

(
1
n

)
+ Op

(
1√
T

)
as n, T →∞

3. 1
nT Tr(E′Ψ−1

0,dE) = 1 + Op

(
1√
T

)
as n, T →∞

4. 1
nT TrF̂′θc

0
F̂θc

0
= Op

(
1
n

)
+ Op

(
1√
T

)
as n, T →∞

5. 1
n log

∣∣∣Ir + Λ′0Ψ
−1
0,dΛ0

∣∣∣ =
(

log(n)
n

)
as n →∞

Proof We have:
∥∥∥∥
E′E
nT

∥∥∥∥ ≤
1
n
‖Ψ0‖+

1
n

∥∥∥∥
E′E
T

−Ψ0

∥∥∥∥

∥∥∥∥
1
n

(
E′E
T

−Ψ0

)∥∥∥∥
2

≤ 1
n2

trace

[(
E′E
T

−Ψ0

)′ (E′E
T

−Ψ0

)]
=

1
n2

n∑

i=1

n∑

j=1

(
1
T

T∑

t=1

eitejt − ψ0,ij

)2

Taking expectations, from assumption B we obtain:

1
n2

E




n∑

i=1

n∑

j=1

(
1
T

T∑

t=1

eitejt − ψ0,ij

)2

 =

1
n2

n∑

i=1

n∑

j=1

E




(
1
T

T∑

t=1

eitejt − ψ0,ij

)2

 ≤ M

T

Result 1 hence follows from the Markov inequality.

Let us turn now to result 2. First, we have: Tr(F− F̂θc
0
)′(F− F̂θc

0
) ≤ r‖F− F̂θc

0
‖2.

Then, using (7.4), we have:

F̂θc
0

= XΨ−1
0,dΛ0(Λ′0Ψ

−1
0,dΛ0+Ir)−1 = FΛ′0Ψ

−1
0,dΛ0(Λ′0Ψ

−1
0,dΛ0+Ir)−1+EΨ−1

0,dΛ0(Λ′0Ψ
−1
0,dΛ0+Ir)−1

so that:

1√
T
‖F−F̂θc

0
‖ ≤

∥∥∥∥
1√
T

F
∥∥∥∥ ‖Λ′0Ψ−1

0,dΛ0(Λ′0Ψ
−1
0,dΛ0+Ir)−1−Ir‖+

∥∥∥∥
1√
nT

E
∥∥∥∥ ‖
√

nΛ0Ψ−1
0,d(Λ

′
0Ψ

−1
0,dΛ0+Ir)−1‖

Assumptions A implies:

Λ′0Ψ
−1
0,dΛ0(Λ′0Ψ

−1
0,dΛ0 + Ir)−1 − Ir = (Λ′0Ψ

−1
0,dΛ0 + Ir)−1 = O

(
1
n

)
as n →∞

Further, we have: ‖Λ0Ψ−1
0,d(Λ

′
0Ψ

−1
0,dΛ0+Ir)−1‖ ≤ ‖Λ′0Ψ−1/2

0,d ‖‖Ψ−1/2
0,d ‖‖(Λ′0Ψ−1

0,dΛ0+Ir)−1‖.
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As assumptions A also imply:

‖Ψ−1/2
0,d ‖ ≤ 1√

λmin (Ψ0)
= O (1) as n →∞

and

‖Λ′0Ψ−1/2
0,d ‖ = ‖Λ′0Ψ−1

0,dΛ0‖1/2 ≤ 1
λmin (Ψ0)

‖Λ′0Λ0‖1/2 = O
(√

n
)

as n →∞

Result 2 then follows from the previous result of this lemma and the fact that by
assumption B we have

∥∥∥ 1√
T
F

∥∥∥ = Op(1).

Result 3 is a direct consequence of Assumption B (i) and the Markov inequality. In
fact:

1
nT

Tr
(
EΨ−1

0,dE
′
)

=
1
n

n∑

i=1

(
1
T

∑T
t=1 e2

it

ψ0,ii

)
=

1
n

n∑

i=1

ψ0,ii

ψ̂0,ii

+ Op

(
1√
T

)

To obtain result 4, notice that:

1
nT

TrF̂′θc
0
F̂θc

0
≤ r

nT

∥∥∥F̂θc
0

∥∥∥
2

=
r

nT

∥∥∥F + F̂θc
0
− F

∥∥∥
2 ≤ 2r

n

(
‖ 1√

T
F‖2 +

1
T
‖F− F̂θc

0
‖2

)

As ‖F− F̂θc
0
‖2 ≤ Tr

(
F− F̂θc

0

)′ (
F− F̂θc

0

)
, the desired rate follows from Assumption B

(iii) and result 2.

Concerning result 5, notice that, by assumptions A:

log
∣∣∣Ir + Λ′0Ψ

−1
0,dΛ0

∣∣∣ = log(n) + log
∣∣∣∣ Ir

n +
Λ′0Ψ−1

0,dΛ0

n

∣∣∣∣, with:

log
∣∣∣∣ Ir

n +
Λ′0Ψ−1

0,d
Λ0

n

∣∣∣∣ ' log
∣∣∣∣
Λ′0Ψ−1

0,d
Λ0

n

∣∣∣∣ ≤ r log
λmax

(
Λ′0Λ0

n

)

λmin(Ψ0) = O(1) as n →∞. Q.E.D.

Corollary Under the same assumptions of Lemma 1, we have:

1
nT

L(X; θc
0) = − 1

2n
log(2π)− 1

2
log |Ψ0,d|− 1

2
+Op

(
log(n)

n

)
+Op

(
1√
T

)
, as n, T →∞

Proof

The only term for which the asymptotic behavior is not a direct consequence of
Lemma 1 is the following:

1
nT Tr

(
(F− F̂θc

0
)Λ′0 + E

)
Ψ−1

0,d

(
(F− F̂θc

0
)Λ′0 + E

)′
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= 1
nT TrΛ′0Ψ

−1
0,dΛ0(F−F̂θc

0
)′(F−F̂θc

0
)−2 1

nT TrΛ′0Ψ
−1
0,dE

′(F−F̂θc
0
)+ 1

nT TrΨ−1
0,dE

′E

Let us analyze the three terms in the summation separately.

The asymptotic behavior of the third term in the summation is a direct consequence
on Lemma 1 (3).

The asymptotic behavior of the first term follows from Assumption A and Lemma 1
(2):

1
nT

TrΛ′0Ψ
−1
0,dΛ0(F− F̂θc

0
)′(F− F̂θc

0
) ≤ 1

nT
λmax

(
Λ′0Ψ

−1
0,dΛ0

)
Tr(F− F̂θc

0
)′(F− F̂θc

0
)

We know (see the proof of lemma 1) that 1
nλmax

(
Λ′0Ψ

−1
0,dΛ0

)
= 1

n‖Λ′0Ψ−1
0,dΛ0‖ = O(1)

so that the result directly follows from lemma 1 (2).

For the second term:

1
nT TrΛ′0Ψ

−1
0,dE

′(F− F̂θ) ≤ r
∥∥∥E′E

nT

∥∥∥
1/2 ∥∥∥Λ′0Λ0

n

∥∥∥ 1

(λminΨ0,d)2
1√
T
‖F− F̂θc

0
‖

= Op

(
1
n

)
+ Op

(
1√
T

)

where the last equality follows for Lemma 1 (1-2) and Assumptions A and B.

The asymptotic simplification of the likelihood, in the Corollary above, is due to the
fact that under the simple approximating model the expected common factor converge
to the true ones (Lemma 1 (i)). The expected values of the common factors, F̂θc

0
, are

essentially the coefficients of an OLS regression of the observation, X, on the factor
loadings, Λ0. If data are gaussian and the restrictions in θc

0 are satisfied, then such
estimates of the common factors are the most efficient. However, the estimates are still
consistent under the weaker assumptions A (i) and A (ii). This result also tells us that
a large cross-section solves the common factors indeterminacy we have with a finite
cross-section dimension.

Consider now the likelihood evaluated at its maximum where θ̂ :=
{
Â(L); Ĥ; Λ̂; Ψ̂d

}

are the Maximum Likelihood estimates of the parameters, with θ̂ ∈ Θc. We will denote
by F̂θ̂ the corresponding estimates of the common factors.

The likelihood at its maximum takes the form, see equation (7.2):

L(X; θ̂) = −nT
2 log(2π)− T

2 log |Ψ̂d| − 1
2Tr(X− F̂θ̂Λ̂

′)Ψ̂−1
d (X− F̂θ̂Λ̂

′)′

−1
2vec(F̂′

θ̂
)′Φ−1

θ̂
vec(F̂′

θ̂
)− 1

2 log |Ωθ̂|

Assumption C insures that the constraints on the size of the idiosyncratic variance
that is imposed in the maximization is not binding, that is θc

0 ∈ Θc. Consequently,
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L(X; θ̂) ≥ L(X; θ0). Using the Corollary, this implies:

0 ≥ 2
nT

(
L(X; θc

0)− L(X; θ̂)
)

= 1
n log |Ψ̂d|+ 1

nT Tr(X− F̂θ̂Λ̂
′)Ψ̂−1

d (X− F̂θ̂Λ̂
′)′

+ 1
nT vec(F̂′

θ̂
)′Φ−1

θ̂
vec(F̂′

θ̂
) + 1

nT log |Ωθ̂|

− 1
n log |Ψ0,d| − 1 + Op

(
1√
T

)
+ Op

(
log(n)

n

)

Lemma 2 Under assumptions A, B, and C, we have:

1
nT Tr(X− F̂θ̂Λ̂

′)Ψ̂−1
d (X− F̂θ̂Λ̂

′)′ ≥ 1
nT Tr(Λ′0Ψ̂

−1
d Λ0)′(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

−2
√

1
T Tr((F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ))

√
Op

(
1√
T

)
+ Op

(
1
n

)

+ 1
n

∑n
i=1

ψ0,ii

ψ̂ii
+ Op

(
1√
T

)
+ Op

(
1
n

)

where Ĥ =
(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
F is the coefficient of the OLS projection of F on F̂θ̂

Proof Consider the coefficients of the OLS projection of X on F̂θ̂:

ˆ̂Λ = X′F̂θ̂

(
F̂′

θ̂
F̂θ̂

)−1

Least squares properties imply that:

1
nT Tr(X− F̂θ̂Λ̂

′)Ψ̂−1
d (X− F̂θ̂Λ̂

′)′ ≥ 1
nT Tr(X− F̂θ̂

ˆ̂Λ′)Ψ̂−1
d (X− F̂θ̂

ˆ̂Λ′)′

Notice that:

(X− F̂θ̂
ˆ̂Λ′) =

(
FΛ′0 + E− F̂θ̂

(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
FΛ′

0 − F̂θ̂

(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
E

)

= (F− F̂θ̂Ĥ)Λ′0 + (IT − PF̂θ̂
)E

where Ĥ =
(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
F is the coefficient of the OLS projection of F on F̂θ̂ and

PF̂θ̂
= F̂θ̂

(
F̂′

θ̂
F̂θ̂

)−1
F̂′

θ̂
is the projection matrix associated with F̂θ̂.

Consequently:
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1
nT Tr(X− F̂θ̂

ˆ̂Λ′)Ψ̂−1
d (X− F̂θ̂

ˆ̂Λ′)′ = 1
nT Tr(F− F̂θ̂Ĥ)Λ′0Ψ̂

−1
d Λ0(F− F̂θ̂Ĥ)′

+ 1
nT Tr(IT − PF̂θ̂

)EΨ̂−1
d E′(IT − PF̂θ̂

)

+2 1
nT Tr(F− F̂θ̂Ĥ)Λ′0Ψ̂

−1
d E′(IT − PF̂θ̂

)

We have:

1
nT Tr(IT − PF̂θ̂

)EΨ̂−1
d E′(IT − PF̂θ̂

) = 1
nT Tr

(
EΨ̂−1

d E′(IT − PF̂θ̂
)
)

= 1
nT Tr

(
EΨ̂−1

d E′
)
− 1

nT Tr
(
EΨ̂−1

d E′PF̂θ̂

)

By assumption B (ii):

1
nT

Tr
(
EΨ̂−1

d E′
)

=
1
n

n∑

i=1

(
1
T

∑T
t=1 e2

it

ψ̂ii

)
=

1
n

n∑

i=1

ψ0,ii

ψ̂ii

+ Op

(
1√
T

)

Furthermore:

1
nT

Tr
(
EΨ̂−1

d E′PF̂θ̂

)
=

1
nT

Tr
(
F̂′

θ̂
EΨ̂−1

d E′F̂θ̂

(
F̂′

θ̂
F̂θ̂

)−1
)
≤ r

1
nT

λmax

(
EΨ̂−1

d E′
)

= Op

(
1√
T

)
+Op

(
1
n

)

Finally,

1
nT

∣∣∣Tr(F− F̂θ̂Ĥ)Λ′0Ψ̂
−1
d E′(IT − PF̂θ̂

)
∣∣∣ ≤

√
1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

√
1

n2T Tr(Λ′0Ψ̂
−1
d E′EΨ̂−1

d Λ0)

=
√

1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

√
Op

(
1√
T

)
+ Op

(
1
n

)

The desired result follows. Q.E.D.

To prepare the proof of Proposition 1, notice first that vec(F̂′
θ̂
)′Φ−1

θ̂
vec(F̂′

θ̂
) ≥ 0.

Moreover, it can be shown that: log |Ωθ̂| > 0. Indeed, if we denote Σθ = Eθ [(vecX′)(vecX′)′],
we have:

Σθ = (IT ⊗ Λ)Φθ (IT ⊗ Λ)′ + (IT ⊗Ψd) .

Hence, it can the be checked that

Σ−1
θ =

(
IT ⊗Ψ−1

d

)
−

(
IT ⊗Ψ−1

d Λ
) (

Φ−1
θ + IT ⊗ Λ′Ψ−1

d Λ
)−1 (

IT ⊗ Λ′Ψ−1
d

)
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and Ωθ = IrT +
(
IT ⊗ Λ′Ψ−1

d Λ
)

Φθ.

It then follows that Ωθ > IrT , so that log |Ωθ̂| > 0. This property holds for all A(L)
and Q satisfying R1.

Finally:

1
n

log |Ψ̂d|+ 1
n

n∑

i=1

ψ0,ii

ψ̂ii

− 1
n

log |Ψ̂0d| − 1 =
1
n

n∑

i=1

(
ψ0i

ψ̂i

− log

(
ψ0i

ψ̂i

)
− 1

)
≥ 0

Using the fact that n
log(n) = O(n), we then obtain:

0 ≥ 2
nT

(
L(X; θc

0)− L(X; θ̂)
)

≥ 1
nT Tr(Λ′0Ψ̂

−1
d Λ0)(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

−2
√

1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)Op

(√
1

∆nT

)
+ Op

(
1

∆nT

)

where
∆nT = min

{√
T ,

n

log(n)

}

We can now prove our main result.

Proof of Proposition 1

0 ≥ 1
nT Tr(Λ′0Ψ̂

−1
d Λ0)(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

−2
√

1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)Op

(√
1

∆nT

)
+ Op

(
1

∆nT

)

≥ λmin

(
Λ′0Ψ̂−1

d
Λ0

n

)
1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ)

−2Op

(√
1

∆nT

) √
1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ) + Op

(
1

∆nT

)

= λmin

(
Λ′0Ψ̂−1

d
Λ0

n

)
VnT − 2

√
VnT Op

(√
1

∆nT

)
+ Op

(
1

∆nT

)

where VnT = 1
T Tr(F− F̂θ̂Ĥ)′(F− F̂θ̂Ĥ).

Since lim infn,T→∞ λmin

(
Λ′0Ψ̂−1

d
Λ0

n

)
> 0, we have:

VnT −
√

VnT Op

(√
1

∆nT

)
+ Op

(
1

∆nT

)
≤ 0 (7.6)
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which implies that: VnT = Op

(
1

∆nT

)

In order to proves the latter, it is actually sufficient to notice that for any T and
n we have a second order polynomial: y2 + by + c with y :=

√
VnT , b = Op

(√
1

∆nT

)
,

c = Op

(
1

∆nT

)
which is supposed to take a negative value in y. This is possible only if

the following conditions are satisfied:

a) the discriminant is positive, i.e. c < 1
4b2 (which is possible since b2 = Op

(
1

∆nT

)
)

b) y is between the two roots of the polynomial, i.e.

1
2

(
b−

√
b2 − 4c

)
≤ y ≤ 1

2

(
b +

√
b2 + 4c

)

The conditions a) and b) imply that y = Op

(√
1

∆nT

)
and hence VnT := y2 = Op

(
1

∆nT

)
.

Q.E.D.

Proof of Remark 1
The fact that Proposition 1 holds for any A(L) and Q is easily proved by noticing

that:
a) A(L), Q only enter in vec(F̂′

θ̂
)′Φ−1

θ̂
vec(F̂′

θ̂
) and log

(
IrT + Φθ̂Γθ̂

)
and the proof only

requires these quantities to be positive.
b) imposing restrictions on A(L) and Q in the approximating model, we define a pa-
rameter space Θ̃c ⊆ Θc for which we still have θc

0 ∈ Θc and hence L(X; θ̂) ≥ L(X; θ0).

Proof of Remark 2
If the maximization is run for a number of common factors r̃ > r the new model

will encompass the previous one and hence L(X; θ̂) ≥ L(X; θ0). This is all we need for
Proposition 1 to hold.

Consistency of Principal Components
This case does not follow immediately from the proof of Proposition 1. In fact,

under the approximating model of the principal components we have a restricted pa-
rameter space, say Θc

pc, that does not necessarily contains θc
0 defined above for which

the idiosyncratic component is left unrestricted. However, if we replace in the proof of
Proposition 1 θc

0 with

θpc
0 :=

{
A(L) = Ir; Q = Ir, Λ = Λ0; Ψd = σ2

0In

}

where σ2
0 = 1

nTrΨ0, the result will follow along the same lines since we would have
θpc
0 ∈ Θc

pc and hence L(X; θ̂) ≥ L(X; θpc
0 ). In addition it is possible to show that Fθpc

0

have the same asymptotic properties of Fθc
0
. A detailed proof is available under request.
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